Nurses’ knowledge, risk assessment, and self-efficacy regarding venous thromboembolism

Conhecimento, avaliação de risco e autoeficácia quanto a tromboembolismo venoso entre enfermeiros

Conocimientos, evaluación de riesgos y autoeficacia sobre tromboembolismo venoso entre enfermeros

Jaqueline Sousa da Silva¹
Jung-Ah Lee²
Daiane Lopes Grisante¹
Juliana de Lima Lopes³
Camila Takão Lopes¹

¹Escola Paulista de Enfermagem, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
²Sue & Bill Gross School of Nursing, University of California, Irvine, California, USA.

Conflicts to interest: none to declare.

Abstract

Objectives: To compare nurses’ self-perceived and objective knowledge of venous thromboembolism, and to identify their risk assessment practices and perceived barriers, and self-efficacy in delivering care to prevent venous thromboembolism.

Methods: A cross-sectional, descriptive study including bedside nurses working in adult units at a teaching hospital in the city of São Paulo. Nurses answered a questionnaire on self-perceived and objective knowledge, risk assessment, self-efficacy, and barriers to venous thromboembolism risk assessment, which was developed and refined by nurses and physicians with academic and clinical expertise. Data were analyzed using descriptive statistics (absolute and relative frequencies).

Results: Out of 81 nurses, 53.3% perceived their own knowledge of venous thromboembolism risk assessment as good, however, only an average of 33.1% of nurses answered objective questions about the disease correctly; and 44.4% performed risk assessment for only a few patients. The most common barrier for risk assessment was the lack of protocol (65.4%), followed by the lack of time (29.6%). Regarding self-efficacy, only 13% to 24.3% were sure most of the time that they could prevent venous thromboembolism and educate patients for prevention.

Conclusion: A gap between self-perceived and objective knowledge of venous thromboembolism was identified, and risk assessment was considered insufficient. Nurses had low risk assessment self-efficacy. The lack of a protocol is perceived as a significant barrier for assessment. These results may support individual planning of permanent education focusing on disease prevention.

Resumo

Objetivo: Comparar o conhecimento autopercebido e objetivo de enfermeiros sobre tromboembolismo venoso e identificar suas práticas e barreiras percebidas para a avaliação de risco e autoeficácia em realizar cuidados preventivos para a doença.

Métodos: Estudo descritivo transversal realizado com enfermeiros assistenciais lotados nas unidades nos setores de cuidados a pacientes adultos de um hospital-escola da cidade de São Paulo. Os enfermeiros responderam a um instrumento sobre conhecimento percebido e objetivo, avaliação de risco, autoeficácia e barreiras para avaliação de risco de tromboembolismo venoso, o qual foi elaborado e refinado por enfermeiros e médicos com expertise acadêmica e clínica. Os dados foram analisados por estatística descritiva (frequências absolutas e relativas).

Resultados: Dos 81 enfermeiros, 53,3% percebiam seu conhecimento sobre avaliação de risco de tromboembolismo venoso como “bom”, porém 33,1% em média responderam corretamente a questões
Venous thromboembolism (VTE) is the world’s third leading cause of mortality, with an annual incidence ranging from 0.75 to 2.69 cases per 1,000 individuals in the European, North American, South American, and Australian populations. This disease incidence increases to 2 to 7 cases among individuals over 70 years old per 1,000 individuals. When associated with hospitalization, VTE increases hospital length of stay and mechanical ventilation duration, and it is the leading cause of lost disability-adjusted life years.\(^1\)\(^-\)\(^3\) In Latin America, VTE-associated in-hospital mortality rates reach 14.1% in Brazil and 19% in Argentina.\(^4\)

In this context, preventing in-hospital VTE must be a priority of health care teams. Prophylactic measures must be taken according to the identified VTE risk and may include but are not limited to ambulation, intermittent pneumatic compression of the lower extremities, graduated compression stockings, unfractionated heparin, low molecular weight heparin, oral anticoagulants.\(^5\)

However, studies have shown low implementation of prophylactic measures for in-hospital VTE. In Jordan, VTE prophylaxis was properly implemented in only 35.1% of 456 hospitalized patients.\(^6\) In an Irish hospital, only 64.0% of surgical patients and 47.0% of medical patients at risk of VTE received adequate prevention VTE care.\(^7\) In Portugal, 67.2% of hospitalized patients received VTE prophylaxis.\(^8\)

In Brazil, a study conducted in a public teaching hospital in the city of São Paulo, including 369 patients, found that all patients had at least one VTE risk factor, but pharmacologic prophylaxis was implemented to only 70.3% high-risk patients with no contraindication, while mechanical prophylaxis was provided for only one of the patients with contraindication.\(^9\) In a private hospital in the same city, professional adherence to a VTE prevention protocol increased from 63.8% to 75.0% after implementing permanent education measures.\(^10\) A different study conducted in a non-metropolitan city in the state of São Paulo found the lack of adherence to a VTE prevention protocol of 38.9%, resulting in an additional monthly cost of R$180.40.\(^11\)

Even though nurses do not prescribe pharmacologic prophylaxis for VTE, they do perform risk assessment, patient and family education on these risks, and anticoagulant therapy management upon transitioning from the hospital to other health care settings.\(^12\)\(^-\)\(^13\) Therefore, the fulfillment of these duties may be positively or negatively impacted by gaps between nurses’ self-perceived and objective
knowledge, self-efficacy, and perceived barriers to risk assessment and VTE prevention.(12,14)

Whereas objective knowledge is that assessed via standardized scores or supervisor-attributed grading based on answers to questions or tests, self-perceived knowledge is the individual’s assessment of their own level of knowledge.(15) Self-efficacy refers to the belief in one’s own capacity to organize and execute the necessary courses of action to reach certain outcomes.(16) Perceived barriers, in turn, consist of a cost-benefit analysis conducted by individuals to weight a beneficial action and its counter-limitations, such as the necessary time to perform a given action.(17)

A study conducted in California, USA, found that American nurses had a high level of objective knowledge on VTE risk factors, but less knowledge about prophylaxis for the disease and its signs and symptoms. In addition, upon investigating their self-efficacy, only 50\% of healthcare providers believed themselves capable of conducting the proper mechanical prophylaxis. When questioned about their skills for educating at-risk patients, the percentage dropped to less than a fourth of healthcare providers.(12)

Despite previous Brazilian studies assessing provider adherence to VTE prophylactic measures,(9-11) there are no national studies comparing self-perceived to objective VTE knowledge in nurses, as well as their practices and perceived barriers to risk assessment and self-efficacy for VTE prevention. Their assessment is relevant in order to guide educational measures towards the factors that may negatively impact the final outcome of VTE prophylactic actions. The objectives of this study were to compare nurses’ self-perceived and objective knowledge of VTE, and to identify their risk assessment practices and perceived barriers, and self-efficacy in delivering care to prevent venous thromboembolism.

Methods

This study was divided into two phases:

Phase 1) Development and content refinement of the data collection questionnaire: VTE knowledge, VTE risk assessment practices, perceived barriers to VTE risk assessment, and VTE prevention self-efficacy.

A data collection questionnaire was developed based on the one used by Lee et al.(12) in their study performed in California, USA, which consisted of the same objectives. The questionnaire was originally developed by experts on VTE research and instrument development, and revised for clarity and completeness by an interdisciplinary committee on anticoagulation education.

The questionnaire consists of the following five parts (please see the “Initial questionnaire items” column, Appendix 1):

A. Participation and opinion on the quality of current education programs on VTE risk, prevention, and assessment.

B. VTE perceived knowledge and risk assessment practices.

C. Perceived barriers to VTE risk assessment.

D. Self-efficacy on VTE prevention and patient education practices.

E. Objective knowledge of VTE risk, diagnosis, and treatment.

Once developed, the questionnaire was submitted to a group of healthcare providers—the instrument’s judges—with a minimum education level of Master’s, which were selected based on their VTE-related specialties (Cardiovascular, Vascular, and Pulmonology). Four nurses specializing in cardiovascular nursing, a vascular surgeon, and a pulmonologist were invited to participate via e-mail. One of the nurses had an Master’s degree and the remaining three nurses had PhDs, all with a minimum clinical experience of five years, alongside teaching and research experience. Both physicians had PhDs, with clinical, teaching, and research experience.

The professionals assessed the instrument’s items based on:

- Clarity (the item was developed in a way that its content was understandable and properly expressed what it was meant to measure): clear or unclear.(18)
- Theoretical relevance (the item reflects cognitive processes of interest): irrelevant or relevant.(18)
- Practical relevance (the item reflects the proper concepts, it is relevant and adequate for the at-
JUDGES WERE GIVEN 60 DAYS TO COMPLETE THE FORMS. ITEMS CONSIDERED UNCLEAR OR IRRELEVANT BY ANY JUDGE WERE REVISED AND ADJUSTED ACCORDINGLY BY RESEARCHERS.

THE NUMBER OF JUDGES WAS DETERMINED ACCORDING TO CASSEPP-BORGES ET AL., WHICH CONSIDERED SIX TO BE THE MINIMUM NUMBER OF SPECIALISTS FOR THIS TYPE OF ASSESSMENT. IT SHOULD BE NOTED THAT NO TRANSCULTURAL ADAPTATION STUDY NOR VALIDATION OF HEALTH MEASUREMENT INSTRUMENTS WAS CONDUCTED, BECAUSE THIS WAS A DATA COLLECTION QUESTIONNAIRE PERTAINING TO THIS STUDY'S SPECIFIC PURPOSES ALONE. THIS WAS NOT AN INSTRUMENT WHOSE AIM WAS TO REPRESENT THE MEASUREMENT OF ITS CONSTRUCTS ACROSS SETTINGS.

Phase 2) **Assessment of hospital nurses’ VTE knowledge, VTE risk assessment practices, perceived barriers to VTE risk assessment, and self-efficacy for VTE prevention.**

A cross-sectional, analytical study was conducted in a public extra-large teaching hospital in the city of São Paulo. The convenience sample consisted of bedside nurses working in medical or surgical adult units. Nurses who were inactive during the data collection period due to a leave of absence or vacation leave were excluded from the sample, as well as those in diagnostic units, sterilization of materials and infection control services.

Nurses were interviewed in their respective units from January to May 2019, in four different shifts (mornings, afternoons, nights or even days, and nights on odd days) by a 6th semester undergraduate nursing student, who explained the objectives of study and invited the nurses to participate.

Those who accepted to join the study answered the data collection questionnaire developed in phase 1, either in print or electronically, via Google Forms. Documents were to be handed in/answered in up to seven days. The best date and time for collection of the completed instrument in print within this period was agreed individually between the nurse and the researcher. Nurses who did not complete the instrument in print or who did not answer the digital document within the established period were excluded.

Data were stored in a Microsoft Office Excel spreadsheet and analyzed by descriptive statistics. Quantitative variables are shown as mean±standard deviation or median and minimum and maximum values. Qualitative variables are shown as absolute (n) and relative (%) frequencies.

This study was approved by the hospital’s Teaching and Research Committee where data were collected, as well as the Research Ethics Committee (Protocol no. 2.795.754) of Universidade Federal de São Paulo. Confidentiality was guaranteed to judges and bedside nurses. All participants signed the informed consent forms.

Results

In Phase 1, the data collection questionnaire was developed and refined by judges. Six judges were invited and all accepted to participate, and delivered the instrument completed. Appendix 1 (Chart 1) shows the questionnaire’s initial items, the number of judges who considered them unclear or irrelevant, and the questionnaire’s final items after the suggested modifications. Regarding clarity, there were no conceptual changes: all suggestions were related to minor language changes and abbreviations.

In Phase 2, 276 nurses were invited to participate, out of which 5 refused, 81 completed the questionnaire, and 190 did not complete the questionnaire. Most subjects were women (73.3%) with a mean age of 34.0±7.9 years.

Most nurses had a specialist degree as their highest level of education, medical and surgical experience, and a wide variation in length of time in the profession, length of time working in the hospital, and length of time working on their respective units. Only 40% had taken part in education programs on VTE risk, prevention, and assessment (Table 1).

Self-perceived knowledge, practices, and perceived barriers for VTE risk assessment

Most nurses considered their knowledge of VTE risk assessment as good, performed thorough VTE risk assessment in only a few patients, and consid-
The lack of a standardized protocol was the main barrier to VTE risk assessment. More than one barrier could be selected by participants (Figure 1).

Self-efficacy for VTE prevention and patient education practices

The overall mean values of self-efficacy for VTE prevention and patient education practices was 3.2 ± 1.1 out of a maximum of 5. Most nurses were sure about their practices most of the time. The practice showing the lowest mean score was using mechanical devices for VTE prevention, and the practices showing the highest mean scores were encouraging early mobilization and lower extremities exercise (Figure 2).

Objective knowledge of VTE risk, diagnosis, and treatment

Figure 3 shows data on nurses’ knowledge (measured by questions 6 through 21, please see “Initial questionnaire items” column, Appendix 1) of VTE risk, diagnosis, and treatment. The overall mean percentage of questions answered correctly was 33.1±19.6%.

Less than half of the nurses answered correctly the questions 9 (nearly all hospitalized patients are at risk for VTE), 12 (recent surgery is a contraindication for pharmacological prophylaxis with unfractionated heparin or low molecular weight heparin), 17 (enoxaparin is associated with a lower

Table 1. Beside nurses’ Professional characteristics and self-perceived knowledge of VTE risk assessment, performance of a thorough VTE risk assessment, and barriers to thorough VTE risk assessment

<table>
<thead>
<tr>
<th>Variable</th>
<th>Measures</th>
<th>n(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest educational level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specialization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSN/License Degree</td>
<td>63</td>
<td>(77.8)</td>
</tr>
<tr>
<td>Master’s</td>
<td>11</td>
<td>(13.6)</td>
</tr>
<tr>
<td>PhD</td>
<td>1</td>
<td>(1.2)</td>
</tr>
<tr>
<td>Unit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical intensive care unit</td>
<td>22</td>
<td>(27.2)</td>
</tr>
<tr>
<td>Medical floor</td>
<td>17</td>
<td>(21.0)</td>
</tr>
<tr>
<td>Surgical floor</td>
<td>17</td>
<td>(21.0)</td>
</tr>
<tr>
<td>Surgical intensive care unit</td>
<td>15</td>
<td>(18.5)</td>
</tr>
<tr>
<td>Emergency room</td>
<td>6</td>
<td>(7.4)</td>
</tr>
<tr>
<td>Obstetrics and gynecology</td>
<td>4</td>
<td>(4.9)</td>
</tr>
<tr>
<td>Participation on in-service educational programs on VTE risk, prevention, and assessment.</td>
<td>32</td>
<td>(40.0)</td>
</tr>
<tr>
<td>Quality of educational program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td>4</td>
<td>(12.5)</td>
</tr>
<tr>
<td>Regular</td>
<td>1</td>
<td>(3.1)</td>
</tr>
<tr>
<td>Good</td>
<td>4</td>
<td>(12.5)</td>
</tr>
<tr>
<td>Very good</td>
<td>22</td>
<td>(68.8)</td>
</tr>
<tr>
<td>Excellent</td>
<td>1</td>
<td>(3.1)</td>
</tr>
<tr>
<td>Length of time in the profession, months, median (min-max)</td>
<td>84(1-360)</td>
<td></td>
</tr>
<tr>
<td>Length of time working in the hospital, months</td>
<td>48(1-432)</td>
<td></td>
</tr>
<tr>
<td>Length of time working on the unit, months</td>
<td>36(1-288)</td>
<td></td>
</tr>
</tbody>
</table>

*Percentage computed considering the 32 nurses who had participated in educational programs.

Figure 1. Bedside nurses’ self-perception of a) knowledge of VTE risk assessment, b) performance of a thorough VTE risk assessment, and c) barriers to thorough VTE risk assessment.
incidence of thrombocytopenia as compared to unfractionated heparin), and 20 (which of the following tests is indicated for the initial diagnosis of deep vein thrombosis?).

Less than half of the sample answered correctly the questions 13 (is central nervous system surgery over the previous 24 hours an absolute contraindication to heparin prophylaxis?), 15 (is a 35-year-old patient without previous history hospitalized after inguinal hernia correction at risk for venous thromboembolism?), 16 (aspirin is acceptable as an alternative to heparin for pharmacologic prophylaxis), and 18 (warfarin [oral anticoagulant] interacts with many other drugs, such as aspirin and ibuprofen).

Questions 6 (what are the risk factors for venous thromboembolism?), 7 (what are the signs and symptoms of deep vein thrombosis?), and 8 (what are the signs and symptoms of pulmonary embolism?) obtained the lowest rates of correct answers (4.1% to 6.5%).

Figure 2. Bedside nurses’ self-efficacy for venous thromboembolism prevention and patient education practices (n=81)

Figure 3. Nurses’ objective knowledge of venous thromboembolism risk, diagnosis, and treatment
Discussion

The use of VTE prevention measures positively impacts disease-related mortality, length of hospitalization, and incurred expenses due to undesirable events.\(^{(18)}\) The lack of translation of prophylaxis guidelines to in-hospital medical practice may be due to inadequate VTE knowledge, low self-efficacy, and barriers perceived by nurses.\(^{(12,14,20)}\)

This study found that more than half of bedside hospital nurses perceived their own knowledge of VTE risk assessment as good, however, only an average of 33.1% nurses answered our objective VTE questions correctly and less than a third of nurses were sure most of the time that they could prevent and educate patients on VTE prevention. Most nurses performed risk assessment in only a few patients and considered the main barriers to assessment to be the lack of a protocol and the lack of time.

Having 40% of our sample participate in the in-service education programs on VTE risk, prevention, and assessment—out of which nearly 70% considered the quality of information as excellent—may have influenced a predominant result of good for self-perceived knowledge. In fact, previous studies show that low participation in the in-service education programs is associated with negative self-perceived knowledge,\(^{(14)}\) whereas high participation in these programs is related to a positive self-perceived knowledge.\(^{(12)}\)

In addition to improve self-perceived knowledge, continuing nursing education is associated with greater objective knowledge of thromboprophylaxis.\(^{(21)}\) However, despite the predominant good result for perceived knowledge in our sample, the proportion of correct answers to the objective VTE questions was under 60%, which indicates improper objective knowledge. This gap may account for nurses apply VTE risk assessment for only few patients. In agreement with our data interpretation, the literature points out that objective knowledge and perceived knowledge have low correspondence, albeit in different settings.\(^{(15)}\) Differences between perceived and objective knowledge are also shown by the fact that only 13.6% of nurses considered the lack of knowledge as a barrier to VTE risk assessment.

In the hospital setting, approximately 50% of patients may present with concurrent deep vein thrombosis (DVT) and pulmonary embolism (PE). In addition, symptomatic DVT patients may present with silent PE, while PE patients may present with asymptomatic DVT.\(^{(22)}\) In our sample, the lack of objective knowledge was identified mainly regarding VTE risk factors, signs, and symptoms. This lack of knowledge may prevent nurses from recognizing the development of PE in DVT patients, as well as the development of DVT in PE patients.

Data from our sample suggest that education programs on VTE risk, prevention, and treatment, if frequently performed and associated with attractive teaching strategies, may be positive. Published literature shows that use of VTE prophylaxis is dramatically influenced by evidence-based nursing interventions. When institutions offer medical education programs and follow-up on the results, adherence to prophylaxis increases.\(^{(23)}\) For this reason, the institution may need to revisit currently offered education programs, as well as reinforce the relevance of participating in these activities.

The low level of objective knowledge among nurses associated with low self-efficacy on VTE prevention may constitute a considerable obstacle to prevent the disease.\(^{(14)}\) Self-efficacy was low among nurses in our study, mainly regarding the use of mechanical devices for VTE prevention. This result differs from the one seen in an American study\(^{(12)}\) and a Korean study,\(^{(14)}\) in which 50% and 84% of nurses were either always or most of the time sure that they could use mechanical VTE prevention devices.

Different from previously mentioned studies,\(^{(12,14)}\) nurses may have lacked confidence in performing mechanical prophylaxis because this study is a set within a public teaching hospital, which faces a paucity/lack of resources. In agreement with these results, studies show that mechanical VTE prophylaxis is less frequently performed.\(^{(5,6)}\) Encouraging early mobilization and leg exercise for was the practice nurses felt more
Nurses’ knowledge, risk assessment, and self-efficacy regarding venous thromboembolism

In our study, which may be due to the fact that this measure is not contingent on any additional resource.

Published literature shows that introducing medical protocols may positively impact nurses’ VTE knowledge.(24) In addition, having dedicated nurses to VTE prevention is an effective measure to increase thromboprophylaxis. In a study with nearly 9,000 medical patients in 15 Australian hospitals, a full-time educator nurse instituted an education program on the use of VTE prophylaxis measures including education sessions, written and verbal reminders, auditing, and result feedback. A 5.3% increase in prophylaxis protocols was found between audits, as well as a 42% increase in the probability of managing high-risk VTE patients as per evidence-based recommendations.(25) In this sense, the lack of an institutional protocol and the lack of time, pointed out in our sample as barriers to VTE assessment, show that the institution has failed to prioritize VTE risk.

The following limitations should be considered in our study: it was conducted in a single institution with a convenience sample and a high participation refusal rate, which makes it impossible to generalize these results to institutions at large. Given that nurses who were not sure about themselves would tend to refuse participating, there might be an overestimation of actual levels in the general population. Additionally, once the questionnaire could be answered in up to seven days, nurses may have checked literature references, which may also have lead to overestimation.

Our results are based on nurses’ self-reporting, which may be affected by memory flaws and misinterpretation of questions. However, to the best of our knowledge, this is the first Brazilian study to cover a comparison between nurses’ self-perceived and objective knowledge, self-efficacy, and perceived barriers to VTE risk assessment.

The reproduction of this study in other hospitals is encouraged, given the high variability in professional profiles among different institutions. Its results may support individual planning of permanent education focusing on VTE prevention. Particularly, this study shows the need for prioritizing the creation of institutional protocols standardizing VTE risk assessment for all patients, which could potentially impact self-efficacy in nurses and bridge the gap between objective and perceived knowledge.

Conclusion

Most nurses perceived their own knowledge of VTE risk assessment as good, but the measures of objective knowledge were low. The majority of nurses performed risk assessment in only a few patients, mainly due to the lack of a standardized protocol and the lack of time. Self-efficacy on risk assessment, education, and performing mechanical prophylaxis was low.

Collaborations

Silva JS, Lee Jung-Ah, Grisante DL, Lopes JL, and Lopes CT contributed to the study design, data analysis and interpretation, drafting of the paper, critical content review, and approval of the final version to be published.

References

Appendix 1. Initial questionnaire items, number of judges who considered them unclear or irrelevant, and final questionnaire items after the suggested modifications (n=6)

<table>
<thead>
<tr>
<th>Initial questionnaire items</th>
<th>Unclear (n)</th>
<th>Irrelevant (theory) (n)</th>
<th>Irrelevant (practice) (n)</th>
<th>Final questionnaire items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please answer the following questions by choosing the answers that best describe your practice and the practice of other nurses on your unit, without checking any references.</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Please answer the following questions by choosing the answers that best describe your practice and the practice of other nurses on your unit.</td>
</tr>
<tr>
<td>1. Have you participated in in-service courses or education providing information on venous thromboembolism (VTE) assessment and risk prevention?</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1. Have you participated in in-service courses or education providing information on venous thromboembolism assessment and prevention?</td>
</tr>
<tr>
<td>[] Yes</td>
<td>[] No</td>
<td></td>
<td></td>
<td>[] Yes</td>
</tr>
<tr>
<td>1-1. If yes, how would you classify the quality of information received?</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1-1. If yes, considering your knowledge of venous thromboembolism, how would you classify the quality of information received?</td>
</tr>
<tr>
<td>[] Poor</td>
<td>[] Regular</td>
<td>[] Good</td>
<td>[] Very good</td>
<td>[] Excellent</td>
</tr>
</tbody>
</table>

Continue...
Nurses’ knowledge, risk assessment, and self-efficacy regarding venous thromboembolism

<table>
<thead>
<tr>
<th>Question</th>
<th>Option 1</th>
<th>Option 2</th>
<th>Option 3</th>
<th>Option 4</th>
<th>Option 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. How would you assess your overall knowledge of venous thromboembolism (VTE) risk assessment?</td>
<td>Poor</td>
<td>Regular</td>
<td>Good</td>
<td>Very good</td>
<td>Excellent</td>
</tr>
<tr>
<td>3. How often do you perform thorough VTE risk assessment for your patients?</td>
<td>For none of my patients</td>
<td>For few of my patients</td>
<td>For half of my patients</td>
<td>For nearly all of my patients</td>
<td>For all of my patients</td>
</tr>
<tr>
<td>4. What barriers do you face when performing VTE risk assessment?</td>
<td>Lack of time</td>
<td>Lack of knowledge</td>
<td>Language barriers</td>
<td>Lack of a standardized protocol</td>
<td>Other</td>
</tr>
<tr>
<td>5. How would you assess the VTE risk assessment knowledge of the other nurses working with you?</td>
<td>Poor</td>
<td>Regular</td>
<td>Good</td>
<td>Very good</td>
<td>Excellent</td>
</tr>
<tr>
<td>6. How sure are you that you can properly...? (Please circle only one number per row)</td>
<td>Never</td>
<td>Rarely</td>
<td>Sometimes</td>
<td>Most of the time</td>
<td>Always</td>
</tr>
<tr>
<td>7. What are the risk factors for VTE?</td>
<td>Age (>40); Cancer; Inflammatory bowel disease; Thrombophilia; Smoking history; Obesity; VTE history; VTE family history; Pregnancy/postpartum period; Diabetes mellitus; Heart and respiratory failure; Nephrotic syndrome; Trauma (upper or lower extremities); Lack of mobility; Central venous catheterisation/pacemaker; Surgery; Hormone replacement therapy; Chemotherapy/radiation therapy; Oral contraception containing estrogen; Paralysis; Paroxysmal nocturnal haemoglobinuria; Hospitalization; Acute medical condition (such as pneumonia, sepsis etc.); Varicose veins/vein removal; Neurological condition presenting with paresis of the extremities;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8. What are the signs and symptoms of deep vein thrombosis (DVT)?
Please check all that apply.

- [] Pain or changes in calf sensitivities
- [] Swelling in the groin
- [] Distended superficial veins
- [] Swelling
- [] Erythema and discoloration
- [] Cyanosis
- [] Localized heat
- [] Pitting edema

9. What are the signs and symptoms of pulmonary embolism? Please check all that apply.

- [] Tachypnoea (>20/minute)
- [] Cyanosis
- [] Pleural or chest pain
- [] Tachycardia (>100 BPM)
- [] Hemoptysis
- [] Sudden collapse
- [] Shortness of breath
- [] Cough
- [] Sweating

10. Nearly all hospitalized patients are at risk for VTE.

- [] True
- [] False

11. Mechanical prophylaxis is as effective as pharmacologic prophylaxis in preventing VTE.

- [] True
- [] False

12. A history of heparin-induced thrombocytopenia is a contraindication to VTE pharmacological prophylaxis.

- [] True
- [] False

13. Recent surgery is a contraindication to VTE pharmacologic prophylaxis.

- [] True
- [] False

14. Central nervous system surgery within 24 hours is an absolute contraindication to heparin prophylaxis.

- [] True
- [] False

15. Platelet count <100,000 is an absolute contraindication to heparin prophylaxis.

- [] True
- [] False

16. Is a 35-year-old patient without a significant previous history hospitalized after inguinal hernia correction at risk for VTE?

- [] True
- [] False

17. Aspirin is an acceptable alternative to heparin for pharmacologic prophylaxis.

- [] True
- [] False

18. Enoxaparin as compared to heparin offers significant advantages for VTE prophylaxis, as enoxaparin is associated with a lower incidence of heparin-induced thrombocytopenia.

- [] True
- [] False

19. Warfarin (oral anticoagulant) interacts with many other drugs, such as aspirin or ibuprofen.

- [] True
- [] False
Nurses’ knowledge, risk assessment, and self-efficacy regarding venous thromboembolism

20. Beverages low on vitamin K do not impact warfarin. These include: herbal and black tea (green tea is an exception), coffee, and cola beverages (for example, Coke).

- [] True
- [] False

19. Beverages with low levels of do not impact warfarin action. These include: herbal and black tea (green tea is an exception), coffee, and cola beverages (for example, Coke).

- [] True
- [] False

21. Which of the following is the initial diagnostic test of choice for VTE? (Please choose only one.)

- [] Venography
- [] Computed tomography
- [] D-dimer
- [] Impedance plethysmography
- [] Duplex scan (lower extremities USS)

20. Which of the following tests is indicated for the initial diagnosis of deep vein thrombosis? Please choose only one.

- [] Venography
- [] Computed tomography
- [] D-dimer
- [] Impedance plethysmography
- [] Venous Doppler of the lower extremities

22. Which of the following is the initial diagnostic test of choice for pulmonary embolism? Please choose only one.

- [] Duplex scan (lower extremities USS)
- [] V/Q scan (lung scan)
- [] D-dimer
- [] Computed tomography
- [] Pulmonary angiography

21. Which of the following tests is considered the gold standard in pulmonary embolism diagnosis, considering high risk patients? Please choose only one.

- [] Venous Doppler of the lower extremities
- [] Pulmonary perfusion scintigraphy
- [] D-dimer
- [] Computed tomography
- [] Pulmonary angiography